Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(4): E428-E442, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324258

RESUMO

Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.


Assuntos
Glucagon , Insulina , Humanos , Cães , Animais , Glucagon/metabolismo , Insulina/metabolismo , Transcriptoma , Glucose/metabolismo , Fígado/metabolismo , Gluconeogênese/genética , Glicemia/metabolismo
2.
bioRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37808670

RESUMO

Glucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group glucose remained at basal while in the other glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) but only partially sustained increase in hepatic cAMP over 4h, a continued elevation in G6P, and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis and HGP increased rapidly, peaking at 30 min, then returned to baseline over the next 3h (although glucagons stimulatory effect on HGP was sustained relative to the hyperglycemic control group). Hepatic gluconeogenic flux did not increase due to lack of glucagon effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, and downregulation of genes involved in extracellular matrix assembly and development.

3.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645716

RESUMO

Interrupting glucagon signaling decreases gluconeogenesis and the fractional extraction of amino acids by liver from blood resulting in lower glycemia. The resulting hyperaminoacidemia stimulates α cell proliferation and glucagon secretion via a liver-α cell axis. We hypothesized that α cells detect and respond to circulating amino acids levels via a unique amino acid transporter repertoire. We found that Slc7a2ISLC7A2 is the most highly expressed cationic amino acid transporter in α cells with its expression being three-fold greater in α than ß cells in both mouse and human. Employing cell culture, zebrafish, and knockout mouse models, we found that the cationic amino acid arginine and SLC7A2 are required for α cell proliferation in response to interrupted glucagon signaling. Ex vivo and in vivo assessment of islet function in Slc7a2-/- mice showed decreased arginine-stimulated glucagon and insulin secretion. We found that arginine activation of mTOR signaling and induction of the glutamine transporter SLC38A5 was dependent on SLC7A2, showing that both's role in α cell proliferation is dependent on arginine transport and SLC7A2. Finally, we identified single nucleotide polymorphisms in SLC7A2 associated with HbA1c. Together, these data indicate a central role for SLC7A2 in amino acid-stimulated α cell proliferation and islet hormone secretion.

4.
Nat Commun ; 14(1): 235, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646689

RESUMO

Glucagon has emerged as a key regulator of extracellular amino acid (AA) homeostasis. Insufficient glucagon signaling results in hyperaminoacidemia, which drives adaptive proliferation of glucagon-producing α cells. Aside from mammalian target of rapamycin complex 1 (mTORC1), the role of other AA sensors in α cell proliferation has not been described. Here, using both genders of mouse islets and glucagon receptor (gcgr)-deficient zebrafish (Danio rerio), we show α cell proliferation requires activation of the extracellular signal-regulated protein kinase (ERK1/2) by the AA-sensitive calcium sensing receptor (CaSR). Inactivation of CaSR dampened α cell proliferation, which was rescued by re-expression of CaSR or activation of Gq, but not Gi, signaling in α cells. CaSR was also unexpectedly necessary for mTORC1 activation in α cells. Furthermore, coactivation of Gq and mTORC1 induced α cell proliferation independent of hyperaminoacidemia. These results reveal another AA-sensitive mediator and identify pathways necessary and sufficient for hyperaminoacidemia-induced α cell proliferation.


Assuntos
Células Secretoras de Glucagon , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores de Detecção de Cálcio , Transdução de Sinais , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Proliferação de Células , Glucagon , Células Secretoras de Glucagon/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Peixe-Zebra/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
5.
Diabetes ; 72(2): 196-209, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280227

RESUMO

Endogenous insulin secretion is a key regulator of postprandial hepatic glucose metabolism, but this process is dysregulated in diabetes. Subcutaneous insulin delivery alters normal insulin distribution, causing relative hepatic insulin deficiency and peripheral hyperinsulinemia, a major risk factor for metabolic disease. Our aim was to determine whether insulin's direct effect on the liver is preeminent even when insulin is given into a peripheral vein. Postprandial-like conditions were created (hyperinsulinemia, hyperglycemia, and a positive portal vein to arterial glucose gradient) in healthy dogs. Peripheral (leg vein) insulin infusion elevated arterial and hepatic levels 8.0-fold and 2.8-fold, respectively. In one group, insulin's full effects were allowed. In another, insulin's indirect hepatic effects were blocked with the infusion of triglyceride, glucagon, and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids and glucagon, while blocking increased hypothalamic insulin signaling. Despite peripheral insulin delivery the liver retained its full ability to store glucose, even when insulin's peripheral effects were blocked, whereas muscle glucose uptake markedly increased, creating an aberrant distribution of glucose disposal between liver and muscle. Thus, the healthy liver's striking sensitivity to direct insulin action can overcome the effect of relative hepatic insulin deficiency, whereas excess insulin in the periphery produces metabolic abnormalities in nonhepatic tissues.


Assuntos
Hiperinsulinismo , Insulina , Fígado , Animais , Cães , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/metabolismo , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
6.
Pediatr Diabetes ; 23(7): 1088-1100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36004391

RESUMO

OBJECTIVE: Despite enthusiasm for low carbohydrate diets (LCDs) among patients with type 1 diabetes (T1DM), no prospective study has investigated outcomes in adolescent T1DM. We aimed to quantify a pragmatic LCD intervention's impact on glycemia, lipidemia, and quality of life (QOL) in adolescents with T1DM. RESEARCH DESIGN AND METHODS: At an academic center, we randomized 39 patients with T1DM aged 13-21 years to one of three 12-week interventions: an LCD, an isocaloric standard carbohydrate diet (SCD), or general diabetes education without a prescriptive diet. Glycemic outcomes included glycosylated hemoglobin (HbA1c) and continuous glucose monitoring. RESULTS: There were no significant differences in glycemic, lipidemic, or QOL parameters between groups at any timepoint. Median HbA1c was similar at baseline between groups and did not change appreciably (7.9%-8.4% in LCDs, 7.9%-7.9% in SCDs, and 8.2%-7.8% in controls). Change in carbohydrate consumption was minimal with only one participant reaching target carbohydrate intake. CONCLUSIONS: This pragmatic LCD intervention did not alter carbohydrate consumption or glycemia. Although this study was unable to evaluate a highly controlled LCD, it indicates that adolescents are unlikely to implement an educational LCD intervention in routine clinic settings. Thus, this approach is unlikely to effectively mitigate hyperglycemia in adolescents.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adolescente , Glicemia , Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/terapia , Dieta com Restrição de Carboidratos , Hemoglobinas Glicadas/análise , Humanos , Qualidade de Vida , Adulto Jovem
8.
J Endocr Soc ; 5(7): bvab088, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34131611

RESUMO

The purpose of this study was to assess insulin-stimulated gene expression in canine skeletal muscle with a particular focus on NPPC, the gene that encodes C-type natriuretic peptide, a key hormonal regulator of cardiometabolic function. Four conscious canines underwent hyperinsulinemic, euglycemic clamp studies. Skeletal muscle biopsy and arterial plasma samples were collected under basal and insulin-stimulated conditions. Bulk RNA sequencing of muscle tissue was performed to identify differentially expressed genes between these 2 steady-state conditions. Our results showed that NPPC was the most highly expressed gene in skeletal muscle in response to insulin infusion, rising 4-fold between basal and insulin-stimulated conditions. In support of our RNA sequencing data, we found that raising the plasma insulin concentration 15-fold above basal elicited a 2-fold (P = 0.0001) increase in arterial plasma concentrations of N-terminal prohormone C-type natriuretic peptide. Our data suggest that insulin may play a role in stimulating secretion of C-type natriuretic peptide by skeletal muscle. In this context, C-type natriuretic peptide may act in a paracrine manner to facilitate muscle-vascular bed crosstalk and potentiate insulin-mediated vasodilation. This could serve to enhance insulin and glucose delivery, particularly in the postprandial absorptive state.

9.
Diabetes ; 70(6): 1292-1302, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33757993

RESUMO

Hepatic glucose uptake (HGU) is critical for maintaining normal postprandial glucose metabolism. Insulin is clearly a key regulator of HGU, but the physiologic mechanisms by which it acts have yet to be established. This study sought to determine the mechanisms by which insulin regulates liver glucose uptake under postprandial-like conditions (hyperinsulinemia, hyperglycemia, and a positive portal vein-to-arterial glucose gradient). Portal vein insulin infusion increased hepatic insulin levels fivefold in healthy dogs. In one group (n = 7), the physiologic response was allowed to fully occur, while in another (n = 7), insulin's indirect hepatic effects, occurring secondary to its actions on adipose tissue, pancreas, and brain, were blocked. This was accomplished by infusing triglyceride (intravenous), glucagon (portal vein), and inhibitors of brain insulin action (intracerebroventricular) to prevent decreases in plasma free fatty acids or glucagon, while blocking increased hypothalamic insulin signaling for 4 h. In contrast to the indirect hepatic effects of insulin, which were previously shown capable of independently generating a half-maximal stimulation of HGU, direct hepatic insulin action was by itself able to fully stimulate HGU. This suggests that under hyperinsulinemic/hyperglycemic conditions insulin's indirect effects are redundant to direct engagement of hepatocyte insulin receptors.


Assuntos
Glucose/farmacocinética , Insulina/farmacologia , Fígado/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Cães , Ingestão de Alimentos/fisiologia , Feminino , Fígado/efeitos dos fármacos , Masculino , Refeições/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
Cell Metab ; 32(6): 1028-1040.e4, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207245

RESUMO

Isolated reports of new-onset diabetes in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2 is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into ß cells via co-expression of its canonical cell entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2); however, their expression in human pancreas has not been clearly defined. We analyzed six transcriptional datasets of primary human islet cells and found that ACE2 and TMPRSS2 were not co-expressed in single ß cells. In pancreatic sections, ACE2 and TMPRSS2 protein was not detected in ß cells from donors with and without diabetes. Instead, ACE2 protein was expressed in islet and exocrine tissue microvasculature and in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. These findings reduce the likelihood that SARS-CoV-2 directly infects ß cells in vivo through ACE2 and TMPRSS2.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Diabetes Mellitus/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/análise , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/complicações , COVID-19/genética , Células Cultivadas , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Diabetes Mellitus/genética , Expressão Gênica , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Microvasos/metabolismo , Pâncreas/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Serina Endopeptidases/análise , Serina Endopeptidases/genética
11.
bioRxiv ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33106804

RESUMO

Reports of new-onset diabetes and diabetic ketoacidosis in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2, the virus that causes COVID-19, is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into host ß cells via cell surface co-expression of ACE2 and TMPRSS2, the putative receptor and effector protease, respectively. To define ACE2 and TMPRSS2 expression in the human pancreas, we examined six transcriptional datasets from primary human islet cells and assessed protein expression by immunofluorescence in pancreata from donors with and without diabetes. ACE2 and TMPRSS2 transcripts were low or undetectable in pancreatic islet endocrine cells as determined by bulk or single cell RNA sequencing, and neither protein was detected in α or ß cells from these donors. Instead, ACE2 protein was expressed in the islet and exocrine tissue microvasculature and also found in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. The absence of significant ACE2 and TMPRSS2 co-expression in islet endocrine cells reduces the likelihood that SARS-CoV-2 directly infects pancreatic islet ß cells through these cell entry proteins.

12.
Am J Physiol Endocrinol Metab ; 318(4): E514-E524, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31990576

RESUMO

We examined the methionine aminopeptidase 2 inhibitor fumagillin in dogs consuming a high-fat and -fructose diet (HFFD). In pilot studies (3 dogs that had consumed HFFD for 3 yr), 8 wk of daily treatment with fumagillin reduced food intake 29%, weight 6%, and the glycemic excursion during an oral glucose tolerance test (OGTT) 44%. A second group of dogs consumed the HFFD for 17 wk: pretreatment (weeks 0-4), treatment with fumagillin (FUM; n = 6), or no drug (Control, n = 8) (weeks 4-12), washout period (weeks 12-16), and fumagillin or no drug for 1 wk (week 17). OGTTs were performed at 0, 4, 11, and 16 wk. A hyperinsulinemic hyperglycemic clamp was performed in week 12; 4 chow-fed dogs underwent identical clamps. Kilocalories per day intake during the treatment period was 2,067 ± 50 (Control) versus 1,824 ± 202 (FUM). Body weights (kg) increased 1.9 ± 0.3 vs. 2.7 ± 0.8 (0-4 wk) and 1.2 ± 0.2 vs. -0.02 ± 0.9 (4-12 wk) in Control versus fumagillin. The OGTT glycemic response was 30% greater in Control versus fumagillin at 11 wk. Net hepatic glucose uptake (NHGU; mg·kg-1·min-1) in the Chow, Control, and fumagillin dogs was ~1.5 ± 0.6, -0.1 ± 0.1, and 0.3 ± 0.4 (with no portal glucose infusion) and 3.1 ± 0.6, 0.5 ± 0.3, and 1.5 ± 0.5 (portal glucose infusion at 4 mg·kg-1·min-1), respectively. Fumagillin improved glucose tolerance and NHGU in HFFD dogs, suggesting methionine aminopeptidase 2 (MetAP2) inhibitors have the potential for improving glycemic control in prediabetes and diabetes.


Assuntos
Aminopeptidases/antagonistas & inibidores , Cicloexanos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Insaturados/farmacologia , Frutose/efeitos adversos , Glucose/metabolismo , Glucose/farmacologia , Metaloendopeptidases/antagonistas & inibidores , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Dieta , Cães , Ingestão de Alimentos/efeitos dos fármacos , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Resistência à Insulina , Masculino , Sesquiterpenos/farmacologia
13.
Diabetes ; 67(7): 1237-1245, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29666062

RESUMO

We observed that a 4-h morning (AM) duodenal infusion of glucose versus saline doubled hepatic glucose uptake (HGU) and storage during a hyperinsulinemic-hyperglycemic (HIHG) clamp that afternoon (PM). To separate the effects of AM hyperglycemia versus AM hyperinsulinemia on the PM response, we used hepatic balance and tracer ([3-3H]glucose) techniques in conscious dogs. From 0 to 240 min, dogs underwent a euinsulinemic-hyperglycemic (GLC; n = 7) or hyperinsulinemic-euglycemic (INS; n = 8) clamp. Tracer equilibration and basal sampling occurred from 240 to 360 min, followed by an HIHG clamp (360-600 min; four times basal insulin, two times basal glycemia) with portal glucose infusion (4 mg ⋅ kg-1 ⋅ min-1). In the HIHG clamp, HGU (5.8 ± 0.9 vs. 3.3 ± 0.3 mg ⋅ kg-1 ⋅ min-1) and net glycogen storage (6.0 ± 0.8 vs. 2.9 ± 0.5 mg ⋅ kg-1 ⋅ min-1) were approximately twofold greater in INS than in GLC. PM hepatic glycogen content (1.9 ± 0.2 vs. 1.3 ± 0.2 g/kg body weight) and glycogen synthase (GS) activity were also greater in INS versus GLC, whereas glycogen phosphorylase (GP) activity was reduced. Thus AM hyperinsulinemia, but not AM hyperglycemia, enhanced the HGU response to a PM HIHG clamp by augmenting GS and reducing GP activity. AM hyperinsulinemia can prime the liver to extract and store glucose more effectively during subsequent same-day meals, potentially providing a tool to improve glucose control.


Assuntos
Ritmo Circadiano/fisiologia , Glucose/metabolismo , Hiperinsulinismo/metabolismo , Glicogênio Hepático/metabolismo , Animais , Metabolismo dos Carboidratos , Cães , Feminino , Glicogênio/metabolismo , Hiperinsulinismo/sangue , Insulina/sangue , Fígado/metabolismo , Masculino , Fatores de Tempo
14.
Am J Physiol Endocrinol Metab ; 313(3): E263-E272, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28536182

RESUMO

The postprandial state is characterized by a storage of nutrients in the liver, muscle, and adipose tissue for later utilization. In the case of a protein-rich meal, amino acids (AA) stimulate glucagon secretion by the α-cell. The aim of the present study was to determine the impact of the rise in glucagon on AA metabolism, particularly in the liver. We used a conscious catheterized dog model to recreate a postprandial condition using a pancreatic clamp. Portal infusions of glucose, AA, and insulin were used to achieve postprandial levels, while portal glucagon infusion was either maintained at the basal level or increased by three-fold. The high glucagon infusion reduced the increase in arterial AA concentrations compared with the basal glucagon level (-23%, P < 0.05). In the presence of high glucagon, liver AA metabolism shifted toward a more catabolic state with less protein synthesis (-36%) and increased urea production (+52%). Net hepatic glucose uptake was reduced modestly (-35%), and AA were preferentially used in gluconeogenesis, leading to lower glycogen synthesis (-54%). The phosphorylation of AMPK was increased by the high glucagon infusion (+40%), and this could be responsible for increasing the expression of genes related to pathways producing energy and lowering those involved in energy consumption. In conclusion, the rise in glucagon associated with a protein-rich meal promotes a catabolic utilization of AA in the liver, thereby, opposing the storage of AA in proteins.


Assuntos
Aminoácidos/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glucagon/farmacologia , Hormônios/farmacologia , Fígado/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Animais , Glicemia/metabolismo , Cães , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Hipoglicemiantes/farmacologia , Infusões Intravenosas , Insulina/farmacologia , Fígado/metabolismo , Fosforilação/efeitos dos fármacos , Veia Porta , Período Pós-Prandial , Proteínas/efeitos dos fármacos , Proteínas/metabolismo , Ureia/metabolismo
15.
JCI Insight ; 2(6): e91863, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28352665

RESUMO

Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulin's indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulin's indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulin's direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulin's direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion.


Assuntos
Glucose/biossíntese , Insulina/metabolismo , Fígado/metabolismo , Animais , Encéfalo/metabolismo , Cães , Ácidos Graxos não Esterificados/sangue , Feminino , Glucagon/metabolismo , Insulina/administração & dosagem , Insulina/sangue , Lipólise , Masculino , Transdução de Sinais
16.
Cell Metab ; 25(2): 472-480, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28089565

RESUMO

The metabolic stress hormone FGF21 is highly expressed in exocrine pancreas, where its levels are increased by refeeding and chemically induced pancreatitis. However, its function in the exocrine pancreas remains unknown. Here, we show that FGF21 stimulates digestive enzyme secretion from pancreatic acinar cells through an autocrine/paracrine mechanism that requires signaling through a tyrosine kinase receptor complex composed of an FGF receptor and ß-Klotho. Mice lacking FGF21 accumulate zymogen granules and are susceptible to pancreatic ER stress, an effect that is reversed by administration of recombinant FGF21. Mice carrying an acinar cell-specific deletion of ß-Klotho also accumulate zymogen granules but are refractory to FGF21-stimulated secretion. Like the classical post-prandial secretagogue, cholecystokinin (CCK), FGF21 triggers intracellular calcium release via PLC-IP3R signaling. However, unlike CCK, FGF21 does not induce protein synthesis, thereby preventing protein accumulation. Thus, pancreatic FGF21 is a digestive enzyme secretagogue whose physiologic function is to maintain acinar cell proteostasis.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Pâncreas Exócrino/metabolismo , Animais , Comunicação Autócrina , Cálcio/metabolismo , Digestão , Estresse do Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Espaço Intracelular/metabolismo , Masculino , Camundongos Knockout , Pâncreas Exócrino/enzimologia , Comunicação Parácrina , Fosfolipase C gama/metabolismo , Biossíntese de Proteínas , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
17.
Mol Metab ; 4(11): 846-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26629408

RESUMO

OBJECTIVE: Available treatment for obesity and type 2 diabetes mellitus (T2DM) is suboptimal. Thus, identifying novel molecular target(s) exerting protective effects against these metabolic imbalances is of enormous medical significance. Sirt6 loss- and gain-of-function studies have generated confounding data regarding the role of this sirtuin on energy and glucose homeostasis, leaving unclear whether activation or inhibition of SIRT6 may be beneficial for the treatment of obesity and/or T2DM. METHODS: To address these issues, we developed and studied a novel mouse model designed to produce eutopic and physiological overexpression of SIRT6 (Sirt6BAC mice). These mutants and their controls underwent several metabolic analyses. These include whole-blood reverse phase high-performance liquid chromatography assay, glucose and pyruvate tolerance tests, hyperinsulinemic-euglycemic clamp assays, and assessment of basal and insulin-induced level of phosphorylated AKT (p-AKT)/AKT in gastrocnemius muscle. RESULTS: Sirt6BAC mice physiologically overexpress functionally competent SIRT6 protein. While Sirt6BAC mice have normal body weight and adiposity, they are protected from developing high-caloric-diet (HCD)-induced hyperglycemia and glucose intolerance. Also, Sirt6BAC mice display increased circulating level of the polyamine spermidine. The ability of insulin to suppress endogenous glucose production was significantly enhanced in Sirt6BAC mice compared to wild-type controls. Insulin-stimulated glucose uptake was increased in Sirt6BAC mice in both gastrocnemius and soleus muscle, but not in brain, interscapular brown adipose, or epididymal adipose tissue. Insulin-induced p-AKT/AKT ratio was increased in gastrocnemius muscle of Sirt6BAC mice compared to wild-type controls. CONCLUSIONS: Our data indicate that moderate, physiological overexpression of SIRT6 enhances insulin sensitivity in skeletal muscle and liver, engendering protective actions against diet-induced T2DM. Hence, the present study provides support for the anti-T2DM effect of SIRT6 and suggests SIRT6 as a putative molecular target for anti-T2DM treatment.

18.
Am J Physiol Endocrinol Metab ; 308(10): E860-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25783892

RESUMO

Dogs consuming a hypercaloric high-fat and -fructose diet (52 and 17% of total energy, respectively) or a diet high in either fructose or fat for 4 wk exhibited blunted net hepatic glucose uptake (NHGU) and glycogen deposition in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery. The effect of a hypercaloric diet containing neither fructose nor excessive fat has not been examined. Dogs with an initial weight of ≈25 kg consumed a chow and meat diet (31% protein, 44% carbohydrate, and 26% fat) in weight-maintaining (CTR; n = 6) or excessive (Hkcal; n = 7) amounts for 4 wk (cumulative weight gain 0.0 ± 0.3 and 1.5 ± 0.5 kg, respectively, P < 0.05). They then underwent clamp studies with infusions of somatostatin and intraportal insulin (4× basal) and glucagon (basal). The hepatic glucose load was doubled with peripheral (Pe) glucose infusion for 90 min (P1) and intraportal glucose at 4 mg·kg(-1)·min(-1) plus Pe glucose for the final 90 min (P2). NHGU was blunted (P < 0.05) in Hkcal during both periods (mg·kg(-1)·min(-1); P1: 1.7 ± 0.2 vs. 0.3 ± 0.4; P2: 3.6 ± 0.3 vs. 2.3 ± 0.4, CTR vs. Hkcal, respectively). Terminal hepatic glucokinase catalytic activity was reduced nearly 50% in Hkcal vs. CTR (P < 0.05), although glucokinase protein did not differ between groups. In Hkcal vs. CTR, liver glycogen was reduced 27% (P < 0.05), with a 91% increase in glycogen phosphorylase activity (P < 0.05) but no significant difference in glycogen synthase activity. Thus, Hkcal impaired NHGU and glycogen synthesis compared with CTR, indicating that excessive energy intake, even if the diet is balanced and nutritious, negatively impacts hepatic glucose metabolism.


Assuntos
Glucose/farmacocinética , Hiperfagia/metabolismo , Fígado/metabolismo , Animais , Glicemia/metabolismo , Peptídeo C/sangue , Doença Crônica , Cães , Ingestão de Alimentos , Técnica Clamp de Glucose , Insulina/metabolismo , Masculino , Aumento de Peso
19.
Cell ; 159(6): 1478.e1, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25480303

RESUMO

Specialized endocrine cells secrete a variety of peptide hormones all along the gastrointestinal (GI) tract, making it one of the largest endocrine organs in the body. Nutrients and developmental and neural cues trigger the secretion of gastrointestinal (GI) hormones from specialized endocrine cells along the GI tract. These hormones act in target tissues to facilitate digestion and regulate energy homeostasis. This SnapShot summarizes the production and functions of GI hormones.


Assuntos
Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/fisiologia , Hormônios/fisiologia , Animais , Trato Gastrointestinal/química , Humanos
20.
Am J Physiol Endocrinol Metab ; 307(2): E151-60, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24865981

RESUMO

In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg(-1)·min(-1)) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg(-1)·min(-1) in CTR, HFA, and HFR, respectively (P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step.


Assuntos
Dieta Hiperlipídica , Gorduras na Dieta/farmacologia , Frutose/farmacologia , Glucose/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/veterinária , Carboidratos da Dieta/farmacologia , Cães , Glucoquinase/metabolismo , Glicerol/metabolismo , Ácido Láctico/metabolismo , Masculino , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...